1	(a	vap cor rair wat wat	processes from: pour rising idensation in falling eer falling from lake / through pipes eer turns turbine / generator ctricity generated. ma	x B2	
		energy changes: PE to KE matched to a process KE to electricity energy for turbine / power station		B1 B1	
	(b)	(i)	(PE =) mgh OR $2 \times 10^5 \times 10 \times 120$ allow g = 9.8 or 9.81 2.4 × 10^8 J	C1 A	
		(ii)	(KE of water =) $\frac{1}{2}mv^2$ OR $\frac{1}{2} \times 2 \times 10^5 \times 14^2$ 1.96 × 10 ⁷ J OR 2.0 × 10 ⁷ J	C1 A	[8]

2	(a	$\Delta h = 0.068 \mathrm{m}$ <u>use of</u> mgh 0.054 J/Nm	C1 C1 A1	[3]
	(b)	$\frac{1}{2}mv^2$ = candidate's (a) 1.2 m/s ecf from (a)	C1 A1	[2]
	(c)	(i) <u>use of</u> distance ÷ time = 1.1 m/s	C1 A1	
		 (ii) air or wind resistance / friction / heat / thermal energy OR correct mention of experimental error e.g. width of cylinder 	B1	[3]

3	(a	(i)	<u>use of</u> $a = \Delta v/t$ in any form 23.3 m/s ² ignore sign	C1 A1	[2]
	(b)	(i)	336 000 J	В	[1]
		(ii)	<u>use of</u> power × time = 180 000 J	C1 A	[2]
		(iii)	54% OR 0.54 ecf from (i) and (ii) accept (= 180 000/840 000) 21% OR 0.21	B1	[1]
	(c)	app	/thing sensible for a moving vehicle, e.g. flywheel / capacitor / battery propriate change <u>for this device</u> , for example:	M1	
		cap	vheel: speed or kinetic energy bacitor: voltage or charge or electrical energy tery: voltage or charge or electrical or chemical energy	A1	[2]
4	(a	(i)	<i>mgh</i> in any form OR 2.0 × 10 × 4.8 96 J	C1 A1	
		(ii)	GPE \rightarrow KE (+ heat and/or sound) \rightarrow heat and/or sound -1 e.e.o.o.	B2	
	(b)		force × distance/time OR 520 × 3/5 312 W	C1 A1	
		(ii)	2600W ecf (i)	B1	[7]

5	(a	½mv² OR ½ × 900 x 30² 405 000 J	C1 A1	
	(b)	force x distance OR 2000 x 30 60 000 J OR 60 kJ	C1 A1	
	(c)	60 000 W OR 60 000 J/s OR 60kW OR 60 kJ/s ecf from (b)	B1	
	(d)	chemical	B1	
	(e)	idea of energy loss / heat / sound / inefficiency / energy used within car / possibility of increase in P.E. Ignore work done against against friction	B1	[7]